首页> 外文OA文献 >Smart Fog: Fog Computing Framework for Unsupervised Clustering Analytics in Wearable Internet of Things
【2h】

Smart Fog: Fog Computing Framework for Unsupervised Clustering Analytics in Wearable Internet of Things

机译:智能雾:无监督聚类分析的雾计算框架   在可穿戴物联网中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing use of wearables in smart telehealth generates heterogeneousmedical big data. Cloud and fog services process these data for assistingclinical procedures. IoT based ehealthcare have greatly benefited fromefficient data processing. This paper proposed and evaluated use of lowresource machine learning on Fog devices kept close to the wearables for smarthealthcare. In state of the art telecare systems, the signal processing andmachine learning modules are deployed in the cloud for processing physiologicaldata. We developed a prototype of Fog-based unsupervised machine learning bigdata analysis for discovering patterns in physiological data. We employed IntelEdison and Raspberry Pi as Fog computer in proposed architecture. We performedvalidation studies on real-world pathological speech data from in homemonitoring of patients with Parkinson's disease (PD). Proposed architectureemployed machine learning for analysis of pathological speech data obtainedfrom smartwatches worn by the patients with PD. Results showed that proposedarchitecture is promising for low-resource clinical machine learning. It couldbe useful for other applications within wearable IoT for smart telehealthscenarios by translating machine learning approaches from the cloud backend toedge computing devices such as Fog.
机译:在智能远程医疗中,可穿戴设备的使用越来越多,从而产生了异构医疗大数据。云和雾服务处理这些数据以辅助临床程序。基于物联网的医疗保健已从高效的数据处理中受益匪浅。本文提出并评估了低资源机器学习在Fog设备上的使用情况,该设备与可穿戴设备保持紧密接触,以实现智能医疗保健。在最先进的远程护理系统中,信号处理和机器学习模块部署在云中以处理生理数据。我们开发了基于Fog的无监督机器学习大数据分析原型,用于发现生理数据中的模式。我们在建议的体系结构中采用了IntelEdison和Raspberry Pi作为Fog计算机。我们对来自帕金森氏病(PD)患者的家庭监护中的真实世界病理语音数据进行了验证研究。提议的架构采用机器学习来分析从PD患者佩戴的智能手表获得的病理语音数据。结果表明,提出的体系结构对于低资源的临床机器学习很有希望。通过将机器学习方法从云后端到边缘计算设备(例如Fog)进行转换,它可用于可穿戴式IoT中用于智能远程医疗场景的其他应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号